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Abstract

The application of a lossy data compression algorithm based on wavelet transform to 2D NMR spectra is presented. We show

that this algorithm affords rapid and extreme compression ratios (e.g., 800:1), providing high quality reconstructed 2D spectra. The

algorithm was evaluated to ensure that qualitative and quantitative information are retained in the compressed NMR spectra.

Whilst the maximum compression ratio that can be achieved depends on the number of signals and on the difference between the

most and the least intense peaks (dynamic range), a compression ratio of 80:1 is affordable even for the challenging case of

homonuclear 2D experiments of large biomolecules.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

High resolution multidimensional NMR spectros-

copy has developed into a powerful method for the de-

termination of the 3D structure of biological

macromolecules [1,2]. Even though the technical ad-

vances in computer hardware and efficient algorithms
have helped to make the handling of multidimensional

data a routine task, this is possible only with higher

storage capacities of the instruments computers. A

typical 2D experiment could be as large as 64Mb

whereas the final size of a processed 4D spectrum

reaches easily the gigabyte range [3] resulting in a con-

siderable burden on the data storage and backup sys-

tems and low processing efficiency. Furthermore, these
data must be transmitted and stored on computer net-
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works. It is clear that advances in technology for

transmission or storage are not sufficient to solve this

problem. These considerations clearly raise the issue of

efficient data compression.

Commonly available data compression algorithms

such as gzip (Open software Foundation, Cambridge,

MA), compress (Digital unix 4.0, Compaq Computer,
Houston, TX), offer lossless compression ratios of as

much as 6:1. To significantly affect transmission and

storage costs, lossy compression methods (i.e., some in-

formation is lost in the compression process) are re-

quired, always taking into consideration that the loss

must not affect either the integrity of the chemical in-

formation, i.e., all the positions of the NMR signals must

be maintained without introduction of misleading arti-
facts, or the quantitative information of each NMR sig-

nal. In particular, the relative intensity or integral of

every single signal in the spectrum respect to the rest must

be retained. In addition, compression algorithms should

be also valid for NMR intensity-modulated, serial

experiments such as NOE, quantitative scalar coupling

mail to: qocarlos@usc.es


Fig. 1. Fast implementation of the 1D wavelet transform: decompo-

sition of aj is computed with a cascade of filterings followed by a factor

2 downsampling (#2); reconstruction of aj is done by inserting zeros

between samples of ajþ1 and djþ1, filtering and adding up the output.
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[4–6], quantitative residual dipolar coupling [7,8], relax-
ation [9], and cross-correlation measurements [10].

Compression algorithms based on wavelet transform

(WT) have been shown to be a very effective method of

data compression. Their application to NMR spectra

should be straight forward because NMR data are

considerably resistant to the random distortions (noise)

generated by these algorithms, which only causes an

homogeneous reduction of the signal to noise level of
the entire spectrum. At present, the only studies on the

application of WT to the compression of high resolution

NMR spectra have been limited to 1D spectra [11,12].

However, compared to the 1D method, 2D NMR data

compression affords much greater compression ratios

and it is where an efficient compression scheme makes

practical sense anyway.

In the following, we present a fast 2D wavelet-based
compression algorithm, that is generally applicable to

2D NMR data sets. We have tested this compression

methodology with some examples of 2D spectra focus-

ing on keeping the NMR signal information intact either

on cases of qualitative purposes of signal assignment or

on quantitative analysis as commonly required for so-

lution structure calculations derived from nuclear

Overhauser effects.
1 Abbreviations used: b-CD, b-cyclodextrin; FGF, fibroblast

growth factor; PSNR, peak signal-to-noise ratio; SPIHT, set parti-

tioning in hierarchical trees.
2. Theory

2.1. The wavelet transform

In this section a brief background on wavelet analysis

is introduced. General principles and further details of

wavelet theory are explained in [13]. The wavelet

transform decomposes a signal f over wavelet functions

obtained as translations u and dilations s of a mother

wavelet function w of zero average

Wf ðu; sÞ ¼
Z þ1

�1
f ðtÞ 1ffiffi

s
p w� t � u

s

� �
dt: ð1Þ

Shifting the translation u and scale s parameters, the

wavelet transform, unlike the Fourier transform, pro-

vides a time-frequency representation of the signal. That
powerful characteristic led to the WT to become a

technique used for non-stationary signals in several ap-

plications, including biomedicine [14]. Additionally,

sampling the translation and scale parameters as u ¼ 2jn
and s ¼ 2j, it is possible to construct a discrete orthog-

onal wavelet basis holding the signal details necessary to

obtain a finer resolution representation of the signal,

which is related with a multiresolution representation.
In a multiresolution approximation, approaches of a

signal at different resolutions are determined with a

discrete orthogonal basis obtained as dilations and

translations of a scaling function /. This multiresolution

representation is completely specified by a discrete
conjugate mirror filter h. It has been demonstrated that

an orthogonal wavelet basis is constructed with a mo-

ther wavelet w, which is derived from / and h, providing
the detailed information lost when passing the signal to
a coarser resolution representation. The orthogonal

wavelet is designed with a conjugate mirror filter g given

by

g½n� ¼ ð�1Þ1�nh½1� n�: ð2Þ
A signal f at a scale 2j is then represented in a coarse

resolution as

f ¼
Xþ1

n¼�1
ajþ1½n�/jþ1;n þ

Xþ1

n¼�1
djþ1½n�wjþ1;n; ð3Þ

where ajþ1½n� ¼ hf ;/jþ1;ni and djþ1½n� ¼ hf ;wjþ1;ni are
the approximation coefficients and the wavelet coeffi-

cients of f at a coarse resolution, respectively. The fast

implementation of the discrete wavelet transform is

computed with a filter bank, which decomposes the

signal with these conjugate mirror filters h and g, re-
spectively, low and high pass filters, and subsamples the

output by 2 (Fig. 1). Extension to multiple dimensions is

easily obtained with separable wavelet filters, which
extracts signal details at different scales and orientations,

applying conjugate mirror filters along each dimension.

An schematic diagram of the wavelet decomposition of

an image is shown in Fig. 2.

In a wavelet-based lossy compression method, the

original image is first transformed and, once in the

wavelet domain, coefficients are quantized (represented

with a less number of bits, which incurs in a loss of in-
formation) and entropy coded (coded with the minimum

number of bits required), obtaining a compressed file.

The decompression procedure reverts all this steps ob-

taining the reconstructed image, which is not the exact

original image due to the quantization step. Further

performance improvement is obtained when combined

quantization and coding strategies, designed to add in

characteristics of the wavelet decomposition, were used
in the compression process, e.g., the set partitioning in

hierarchical trees (SPIHT)1 algorithm.



Fig. 2. Schematic diagram of the 2D dyadic wavelet decomposition. In the original image, each row is first filtered and subsampled by 2, then, each

column is filtered and subsampled by 2. Four subimages are obtained, called wavelet subbands, referred to as HL, LH, HH: high frequency sub-

bands, and LL: low frequency subband. The LL subband is again filtered and subsampled to obtain four more subimages. This process can be

repeated until the desired decomposition level.
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In this work, a four-level decomposition of the im-

ages was obtained with the 2D discrete wavelet trans-

form using 9/7 biorthogonal wavelet filters. Numerical

studies have shown that the 9/7 biorthogonal filters

provide the best distortion rate performance for wavelet-
based image compression [13,15,16].

2.2. SPIHT coding algorithm

Set partitioning in hierarchical trees (SPIHT) is an

efficient wavelet-based coding algorithm developed by

Said and Pearlman [17]. In terms of image compression

performance it is the state-of-the-art. This coding
method is an extension and an improvement over the

embedded zerotree wavelets (EZW) algorithm developed

by Shapiro [18]. The SPIHT method takes advantage of

the spatial self-similarity across subbands inherent in the

image wavelet transform, i.e., there are wavelet coeffi-

cients in different subbands of the transformed image

that represent the same spatial localization in the origi-

nal image (see Appendix in the supplementary material).
Recent studies have successfully applied SPIHT to lossy

compression of medical images [19–21]. Software im-

plementation of the SPIHT coding algorithm used in
this study was developed in C language. Compression

process duration was 6 s per image when an UltraSP-

ARC workstation (Sun Microsystems, Santa Clara, CA,

USA) with a processor of 450MHz was used to run the

program over an 8Mb spectrum.

2.3. Measures of performance

A compression algorithm can be evaluated by using

different measures: distortion introduced in the process,

memory requirements for method execution, relative

complexity and speed of the algorithm, compression

ratio, etc. A common way to report compression per-
formance is to provide the average number of bits re-

quired to represent a single sample of the compressed

image. This is generally referred to as the compression

rate, and bits per pixel (bpp) is used as the unit of

measure. For instance, given a 2D spectrum of

1024� 1024 pixels (1,048,576 pixels), where 16 bits rep-

resent each pixel, the total amount of bits necessary to

store the spectrum is 16,777,216. Suppose that after
compression the resulting amount of bits is 4,194,304.

This result is equivalent to having a spectrum of

1024� 1024 pixels with only 4 bits representing each
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pixel. It would be said that the compression rate is 4 bpp
or, equivalently, the compression ratio is 4:1, where

Compression ratio ¼ rate of the original spectra

rate of the compressed spectra
:

ð4Þ
Another important issue is to establish the quality of

the compressed image, i.e., the distortion introduced in

the compression process. As the compression ratio in-

creases, the quality of the resulting image is degraded.

Therefore, a parameter for measuring the degree of

distortion introduced is needed. In our paper, the re-
construction quality of the method was evaluated by

means of the peak signal-to-noise ratio (PSNR), which

is often measured in a logarithmic scale

PSNR ð½dB�Þ ¼ 10 log10
A2

MSE

� �
; ð5Þ

where A is the peak amplitude of the original image, and

MSE is the mean squared-error between the original and

the reconstructed spectra

MSE ¼ 1

N

XN
n¼1

ðxijðnÞ � x̂ijðnÞÞ2; ð6Þ

with xijðnÞ and x̂ijðnÞ representing the original and the

reconstructed spectra, respectively, and N representing

the number of pixels of the spectra.
3. Results and discussion

Lossy compression performance of the wavelet-based
coding method was evaluated for several 2D NMR ex-

amples representative of different types of spectra. The

2D HMQC-COSY (magnitude mode), 2D TOCSY

(phase sensitive), and 2D HSQC (phase sensitive) ex-

periments, were used to evaluate the SPIHT algorithm

for the compression of qualitative information (signal

assignment). On the other hand, a series of 2D NOESY

experiments (phase sensitive) were chosen to evaluate the
SPIHT algorithm for the compression of quantitative

NMR information. The usually rather small NOE signal

intensity suppose a very demanding test for the com-
Table 1

PSNR (in decibels) at various compression ratios for all the spectra analyze

Ratio Rate

(bbp)

HMQC-

COSY

NOESY

50ms 100ms 150ms 2

16:1 1 81.61 84.56 84.7 84.79 8

20:1 0.8 79.88 82.28 82.41 82.49 8

26.7:1 0.6 78.42 79.97 80.08 80.16 8

40:1 0.4 76.79 77.89 77.98 78.05 7

80:1 0.2 74.59 74.77 74.96 75.1 7

160:1 0.1 72.95 70.14 70.38 70.63 7

320:1 0.05 71.87 62.96 63.5 63.81 6

800:1 0.02 70.92 51.81 52 33.09 5
pression algorithm. The results of the evaluation of the
different experiments by means of the PSNR (Eq. (5)) of

the different spectra are given in Table 1 and Fig. 3.

The results of the 2D HMQC-COSY spectrum of a

sample of b-cyclodextrin (b-CD), clearly show the abil-

ity of the SPIHT compression algorithm to maintain

integrity of the NMR assignment. Even though at a

compression ratio of 800:1 there was a slight decrease in

the PSNR (Fig. 3), the comparison between the original
2D spectrum and the one reconstructed at this high

compression factor showed that they were almost iden-

tical (Fig. 4).

To evaluate the performance of the method in situa-

tions when the number of signals is higher, we chose the

2D TOCSY and 2D 15N-HSQC spectrums of the human

acidic fibroblast growth factor (FGF) protein [22]. For

the former spectrum it was found that compression ra-
tios of 800:1 and 320:1 result in a loss of the least intense

peaks, whereas at 80:1 all the signals were retained. In

the case of the 15N-HSQC spectrum (Fig. 5), the best

compromise between compression and spectral quality

was found when a compression ratio of 160:1 was used;

it is clear from Figs. 5A and C that both spectra were

almost identical. In this example, the original 4Mb file

was reduced to just 25.6Kb.
To check the limits for which the lossy SPIHT com-

pression is able to ensure that the absolute intensities of

the signals (i.e., integral volumes) in the decompressed

spectrum match those in the raw, original uncompressed

spectrum, a quantitative test was performed. Thus, a

series of 2D NOESY experiments of the b-CD sample

were acquired under the same conditions but varying the

mixing time between 50 and 500ms in different experi-
ments. The five well-resolved NOEs from H-1 to pro-

tons H-2, H-3, H-4, H-5, and H-6 in the b-CD were

quantified (see Section 5) to determine NOE cross-re-

laxation rates at different compression ratios, detailed in

Table 2. NOE cross-relaxation rate is a very sensitive

parameter to check for potential artifacts or biasing

occurring to the peak integrals as a result of the use of

the compression algorithm. Table 2 shows that when the
data was compressed at a very high ratio of 800:1, the

values of H1–H5 and H1–H6 differed significantly from
d

TOCSY HSQC

00ms 350ms 400ms 500ms

5.29 85.58 85.56 85.85 40.56 74.15

2.91 83.17 83.21 83.53 40.26 72.07

0.51 80.72 80.82 81.18 38.67 69.69

8.36 78.56 78.65 78.87 38.3 66.54

5.55 75.76 75.93 76.3 36.03 62.32

1.32 71.54 72.01 72.69 35.43 59.3

4.42 64.81 65.65 66.34 32.91 57.25

2.35 36.07 54.05 55.14 29.45 54.77



Fig. 3. Plots of PSNR vs. compression ratio for the spectra (A) 2D HMQC-COSY of b-CD, (B) 2D NOESY of b-CD, (C) 2D TOCSY of FGF

protein, and (D) 2D 15N-HSQC of FGF protein.
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the values obtained from the uncompressed spectrum. A
close look at the absolute integral values in the com-

pressed spectra shows that SPIHT tends to scale down

all the integrals in the spectrum by a similar factor.

Eventually, at a very high compression ratio the lowest

intense signals (e.g., the two very small NOEs at the

shortest mixing times) were almost reduced to the noise

level, causing the erroneous values observed in the fit for

the cross-relaxation. This effect was also observed in the
significant diminution of the PSNR values (see Fig. 3B).

This problem did not occur at the compression ratios of

320:1 and 80:1 (Table 2), for which the results were

virtually similar to the original spectrum and the small

differences basically reflected the proper signal integra-

tion accuracy. At these two compression ratios, the

straight forward calculation from the determined NOE

cross-relaxation rates to proton–proton distance (see
Section 5) gave deviations below 0.3% in the determined

distances a range of error that is by far below the ac-

curacy of the NMR NOE methods (data not shown).
4. Conclusions

We have shown that high compression rates (up to
800:1) can be achieved with the wavelet-based algorithm
presented in this work. The maximum compression ratio
affordable depends on the quality of the original spec-

trum itself (signal to noise ratio), the total number of

signals, and the user�s needs to preserve certain small

signals of interest above a certain signal to noise level.

When the number of signals in the spectrum is not

too high and the signal to noise ratio of the original

spectrum is high, as it usually happens in HMQC and

related experiments of medium-sized organic molecules,
very high compression ratios can be used without risk of

losing the qualitative chemical information (e.g., the

800:1 compression ratio of Fig. 4).

When quantitative information is required or the

number of signals is high, more modest levels of com-

pression should be used instead to avoid losing the in-

formation from the less intense peaks, but even in the

most unfavorable cases, such as the quantification of
small NOE intensities, a compression ratio of 80:1 can

be used safely.

We are confident that spectral NMR databases would

benefit from this compression scheme, leading to a more

efficient data handling and processing. Future work will

involve the extension of the algorithm to compress 3D

and 4D spectra. Considering the sparse nature of each

2D plane, it is expected that the performance of the
method will be even higher. In addition, work to allow



Fig. 4. 2D HQMC-COSY of b-CD, original spectrum (A) and compressed at a compression ratio of 800:1. (B) Only the spectral region of signals

H2–H5 is displayed.
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the automatic calculation of the best compression factor

with minimum user intervention is currently in progress.
5. Experimental

5.1. Sample preparation

Fifteen milligrams of b-cyclodextrin (b-CD) (Sigma)

were dissolved in 0.5ml D2O 99.9% (Sigma).
Two samples of 8mg of human acidic FGF protein

(15N-labeled and unlabeled) were dissolved in H2O/D2O

(90/10) with phosphate buffer.

5.2. NMR experiments

NMR experiments were acquired on a 750MHz

Varian INOVA or in a 500 MHz DRX Bruker Avance
spectrometer. The spectra were processed with MestRe-

C [23] software.



Fig. 5. 2D 15N-HSQC of the FGF protein. (A) Original uncompressed spectrum. (B) Compressed at 800:1 ratio. (C) At 320:1 and (D) at 160:1.

Table 2

Experimental cross relaxation rates, rij, for different proton pairs

of b-CD from the analysis of 2D NOESY intensities at the different

compression ratios

Proton

pair

Compression ratio

1:1a 800:1 320:1 80:1

H1–H2 0.07426 0.07143 0.07412 0.07426

H1–H3 0.00881 0.00801 0.00848 0.00882

H1–H5 0.01015 0.01152b 0.01021 0.01019

H1–H4 0.09667 0.09623 0.09645 0.09678

H1–H6 0.01041 0.00656b 0.01035 0.01039

Size (kb) 2048 2.56 6.4 25.6

aUncompressed spectra.
b These values deviate significantly.
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A 2D HMQC-COSY experiment [24,25] acquired at

750MHz was used for the unambiguous assignment of
1H and 13C resonances of b-CD. In this experiment

COSY peaks are resolved in the 13C dimension of a 2D
1H/13C correlation. The spectrum was acquired with

1176 complex points and 400 increments in F2 and F1,

respectively. The data was Fourier transformed and

processed to 2K� 2K data points using a 90� sine-
square apodization along F2 and 0� sine-bell in F1 and

displayed in magnitude mode. The final processed

spectrum occupied 8Mb.

2D WET-TOCSY experiment was acquired at

750MHz for human acidic FGF protein (H2O, 90%).

The residual solvent signal was suppressed with a high

pass filter on the time domain. The raw FID data are

2048� 512 (hypercomplex points). In both dimensions
the FID data were multiplied by a cosine square function

and Fourier transformed to 2K� 2K. Final size is 8Mb.

2D WET-HSQC experiment 15N-labeled FGF pro-

tein sample was acquired at 500MHz (H2O, 90%). The

raw FID data are 1024� 256 (hypercomplex points). In

both dimensions the FID data were multiplied by a

cosine square function and Fourier transformed to

4096� 512. Final size is 4Mb.
2D NOESY experiments were acquired at 500MHz

for the b-CD sample at the following mixing times 0.05,

0.1, 0.15, 0.2, 0.35, 0.4, and 0.5 s. Each spectrum was

acquired with 1024� 256 complex points in F2 and F1,

respectively. The data was Fourier transformed and

processed to 1K� 1K data points using a 90� sine-

square apodization along both dimensions. Each pro-

cessed spectrum occupies 2Mb.
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5.3. NOE quantitative analysis

NOE intensities from the isolated proton resonance

H1 of b-CD were analyzed at the different mixing times

using the initial rate approximation [26]. In this ap-

proach the interproton dipolar cross relaxation rate of a

given proton pair is determined from the slope of the

initial part of the corresponding NOE build-up curve. In

the case of b-CD all the different NOE considered were
found to behave fairly linear in the range of mixing

times explored. Thus, a linear fit of a given NOE cross

peak intensity versus mixing time provided the cross

relaxation rate. The conversion from cross relaxation

rate to proton–proton distance was done according to

the distance reference method [26] by using the following

equation (Eq. (7)):

rij ¼ rref �
ffiffiffiffiffiffiffiffi
rref

rij

6

r
: ð7Þ

In this equation rij and rij are the unknown distance

and the measured cross relaxation rate of any given pair

of protons i and j, respectively, while rref and rref are the
analogue values of a proton pair which is used as ref-
erence, for which rref is a priori known in the molecule.

In the case of b-CD the reference distance used was the

intra-sugar ring distance between the proton pair H1–

H2 which is 2.34�A in the crystal structure of b-CD [27].
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